本文作者:独特魅力

GPT-4o成为全领域SOTA!基准测试远超Gemini和Claude,多模态功能远超GPT-4

独特魅力 05-20 971
GPT-4o成为全领域SOTA!基准测试远超Gemini和Claude,多模态功能远超GPT-4摘要: 随着的火热国产大模型开始呈现爆发式增长态势科技巨头垂直场景玩家纷纷入局在技术跃进式发展的趋势下从文本生成到聊天机器人从网站软件到声明本文来自于微信公众号新智元作者新智元授权转载发布...

随着ChatGPT的火热,国产大模型开始呈现爆发式增长态势,科技巨头、垂直场景玩家纷纷入局。在AI技术跃进式发展的趋势下,“从文本生成到AI聊天机器人”“从网站、软件App到

声明:本文来自于微信公众号 新智元(ID:AI_era),作者:新智元,授权 转载发布。

【新智元导读】半小时的发布会让很多人第一反应是直呼「失望」,但随着 放出更多demo以及更多网友开始试用,大家才发现真的不可小觑,不仅在各种基准测试中稳拿第一,而且有很多发布会从未提及的惊艳功能。

OpenAI在发布会上官宣GPT-4o之后,各路大神也开始了对这个新模型的测评,结果就是,GPT-4o在多项基准测试上都展现了SOTA的实力。

别家发布会都在画饼,OpanAI却总能开出一种「欲扬先抑」的效果,惊喜全在发布会之后。

基准测试结果

首先,在LMSys聊天机器人竞技场上的ELO分数排行上,GPT-4o套了一个GPT2聊天机器人的马甲,以一骑绝尘的态势名列第一,评分为1310,和第二名GPT-4-turbo的1253分相比,呈现断档式的提升。

再来看多模态领域的基准Reka Vibe-Eval,这也是一个很有挑战性的测试,由269个超高质量图像文本对组成,用于评估多模态语言模型的性能。

在Reka Vibe-Eval 分数的排行榜上,GPT-4o再次荣登第一,相比谷歌新发布的Gemini Pro1.5高出了将近三个百分点。

而且GPT-4o克服了这个测试集上大模型常见的「逆缩放」问题,也就是在某些案例中表现不如小模型的问题。

不止如此,GPT-4o的内存突破也值得关注。

针里寻针(Needle in a Needlestack,NIAN)是最近非常流行的开源基准测试,用于评估大模型关注上下文内容的能力。

大语言模型的进展导致曾经流行的基准测试「大海捞针」已经过时,在此基础上,更具挑战性的「针里寻针」测试诞生了。

https://github.com/llmonpy/needle-in-a-needlestack

测试中,「针里寻针」会从一个大型打油诗数据库中挑出几首,将其放在prompt中的特定位置,之后再询问关于这些打油诗的问题,由此可以很好地考察LLM的上下文记忆能力。

每个测试使用5-10个打油诗,放置在prompt中的5-10个位置,重复2-10次。

曾经,GPT-4Turbo和Claude-3Sonnet都在「针里寻针」测试中表现得非常惨烈,侧面证明了这个任务对LLM的难度和挑战性。

广受欢迎的Mistral模型虽然表现得稍好一点,但正确率基本不超过60%。

GPT-4o成为全领域SOTA!基准测试远超Gemini和Claude,多模态功能远超GPT-4

相比之前的模型,GPT-4o取得了飞跃性的突破,正确率每个token位置上都不低于80%,一度接近100%,表现近乎完美!

GPT-4o的能力被严重低估了

新推出的轻量级「GPT-4o」模型,虽然有速率限制,但重点是——*!

语音交互绝对是模型的「亮点」,但它的功能远不止于此!

OpenAI表示这是他们第一个真正的多模态模型,通过单一的神经网络完成所有任务。

网友表示「不知道这是否是真的还是有些夸大,但GPT-4o在所有领域的能力都超过了市场上的其他任何产品。」

有网友发现,作为原生多模态模型,GPT-4o的文生图效果非常惊艳,甚至超过DALLE和MidJourney

而且,在生成图片上的文字时,效果更是远远好过DALL-E3。

DALL-E3在图像上生成超过5个单词后就会崩溃,而GPT-4o不仅做到文字的连续性,还能在之前生成图像的基础上进行迭代。

这种迭代是非常重要的,也标志着模型能力的巨大飞跃。虽然生成出来的文字还是非常「生硬」,甚至有明显错误,但是迭代能力可以使GPT-4o后续逐渐减少文字和图像方面的错误。

除了生成文字,GPT-4o还能你为生成独立的角色形象,然后进行对话互动。

神奇的是,他们把对话界面隐藏在一个悬停图标下!这意味着你可以对它进行任意动作、风格和场景的设计!而且GPT-4o在风格表现方面做得非常出色。

平面图片不够炫酷?GPT-4o能够对图片进行3D重建。

GPT-4o还是一个强大的PS工具,OpenAI的logo被轻松嵌入到了杯垫上,但仔细看的话,你会注意到这两张图片不是同一个杯垫。

模型没有在原图片基础上进行修补,而是从头生成,因此看起来像原始的、未经过PS的图片。

Reddit上一位网友分析认为,OpenAI的Sam Altman等主创团队可能是太喜欢《Her》这部电影了,他们对GPT-4o的语音互动设计很明显受电影的启发(Altman也暗示了这一点),而且发布会的展示也借鉴了电影的手法——

让模型自己展示其惊人的能力,而不是像苹果或者谷歌那样列出原始数据和技术细节。

这样做非常有「艺术感」,吊足了围观群众好奇心,但也很容易让人低估模型的能力。

GPT-4o的能力如此强大,也引发了对模型架构的猜测和热烈讨论,网友们的观点也呈现出两个方向。

一派认为,模型架构应该基本与GPT-4类似。

而另一方的观点似乎更占上风,认为底层架构绝对有重大变动,目标是对齐GPT-4的文字能力,并在推理和多模态方面相比GPT-4有更多提升。

白热化的开源与闭源之争

虽然搭载GPT-4o的ChatGPT聊天界面及其API已经*开放给用户使用,但OpenAI依旧坚持了不开源的传统,这次甚至连一篇技术报告都没有。

但这并不影响GPT-4o在LLM角斗场中掀起风云。Liquid AI的资深科学家Maxime Labonne这样描述:「LLM 争夺战愈演愈烈,GPT-4o 遥遥领先」

这场竞争中值得关注的另一个角度,则是大语言模型的开源和闭源之战。GPT-4o能力的快速增长导致闭源和开源之间的差距再次被拉大。

更重要的是,闭源阵容中并非GPT-4o一枝独秀。综合迄今为止发布的所有LLM,闭源模型的总体表现始终比开源模型更加优秀,而且GPT、Claude、Gemini等系列的闭源模型始终走在最前沿。

红色代表闭源模型,绿色代表开源模型,蓝色区域表示二者之间的差距

曾经,大公司将Linux、安卓等项目开源的动力是希望借助所有开发者的力量,得到不同角度的反馈和更新意见,从而进行快速的迭代优化,并且构建了在世界范围内有广泛影响力的大规模社区,反哺其他的产品线。

但对于LLM来说,情况就不一样了。

想要不断提升大语言模型的能力,算力成本是更大的挑战。根据斯坦福大学发布的2024年人工智能指数报告,训练GPT-4的计算成本约为7800万美元,Gemini Ultra则是一亿九千一百万美元左右。

原文链接:https://aiindex.stanford.edu/wp-content/uploads/2024/04/HAI_AI-Index-Report-2024.*

面对这种级别的投入,去中心化的开源社区对比有巨额投资的科技公司,显然没有优势。企业要想扩大模型产品的影响力,只需像OpenAI一样,*开放API给用户使用即可。

目前这种开源和闭源模型差距越来越大的趋势,Jim Fan曾在去年6月就做出过类似的预测。

但是,LLM的开闭源之争,不仅是企业的商业决策,更关乎AI行业整体的发展。

首先是安全性问题。最近刚从OpenAI离职的首席科学家Ilya Sutskever本人就对此十分关注,他曾在2016的一封电邮中写道:「随着我们越来越接近构建人工智能,开始变的不那么开放是有意义的。」

可以想象一下,如果像GPT-4o这样能力强大的模型公布了代码和模型权重,任何开发者都可以在此基础上微调,以满足自己定义的任何功能,AI的力量可能会迅速失控。

「像 GPT 这样的研究如果落入坏人之手,也可能会进化并导致灾难。」

但另一方面,这些只开放API但不开源的大语言模型对初创公司并不友好。他们没办法根据特定的需求和场景、使用私有数据对模型进行微调,开发出有独创性的、功能灵活多样的产品,只能开始「套壳」。

导致的结果就是,AI初创公司并没有像我们想象的那样蓬勃发展,我们也没有看到更多的*到工作和生活各方各面的AI产品。

正像Jim Fan推文中提到的,「开源LLM总是有更大的多样性」。

这似乎是一个两难问题。

随着大模型之战愈演愈烈,相信对于开源和闭源的激烈讨论依旧会持续下去。

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏

阅读
分享